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ABSTRACT

A new relativistic theory of gravity is presented. This theory

agrees with all experiments to date. It is a metric theory; it is

Lagrangian-based; .and it possesses a preferred frame with conformally-

flat space slices. With an appropriate choice of certain adjustable

functions and parameters, this theory possesses precisely the same post-

Newtonian limit as general relativity!
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I. INTRODUCTION

Since 1970, the gravitation research group at Caltech has been analyz­

ing the experimental foundations of relativistic theories of gravity. Our

1results to date are summarized in the "Varenna lecture notes" of Will.

Those results had led us to hope that current experiments were good enough

to rule out all theories except (i) general relativity, and (ii) theories

which reduce to general relativity when their adjustable parameters are

appropriately adjusted (e.g., the Brans-Dicke-Jordan theory which reduces

to general relativity as w -+ Q) ) • We also had come to hope that general

relativity could be distinguished from all other viable metric theories by

the form of its post-Newtonian limit (PPN parameter values S = y = 1 ,

ell = el2 = el3 = '1 = '2 = '3 = '4 = 0) •

The purpose of this paper is to explode our. hopes. More particularly,

this paper will formulate a new theory of gravity which (for certain values

of its adjustable parameters) has precisely the same post-Newtonian limit

as general relativity, but can never reduce to general relativity in the

I full, non-linear case.

To distinguish experimentally between this new theory and general

relativity, one will have to use non-post-Newtonian experiments. These

could include: (i) gravitational-wave experiments; (ii) cosmological

observations, and (iii) (in the distant future) post-post-Newtonian

experiments. The present paper will not discuss such possibilities.

Rather, it will merely present the new theory (§II) and compute its post­

Newtonian limit (appendix).
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II. PRESENTATION OF THE THEORY

We present the new theory using the notation and format of the

2author's recent "cbmpendiwn of gravitation theories". (In particular,

note that we set c = G = 1.)

a. Gravitational fields present: A flat packground metric
i ..

n=n. dx 0dxJ;
-. iJ - -

i
~ = Wi ~x ; and the

scalar fields 4>

physical metric

and t ; a one-form field

b. Arbitrary parameters and functions: Three arbitrary functions f l (4)) ,

f
2

(4)), f
3

(4)), and one arbitrary parameter e; in the post-Newtonian

limit, there are four arbitrary parameters, a, b, d, ·and e (see below).

c. Prior geometry: The following constraints are imposed, ~ priori, on

the geometrical relationships among the gravitational fields:

(i) flatness of the metric ~

(Riemann tensor constructed from

(ii) "meshing constraints" on t and ~

t Iij = 0

i'
tit j n J = +1, ,

rp = 0 (la)

(lb)

(Ie)

(Here and below a slash denotes a covariant derivative with

. respect to
i'I"J ,and n J is the inverse of

t ,I. nij = 0 ". 'I'j
,~

(iii) algebraic equation for the physical metric in terms of the

."auxiliary gravitational fields" I"J' 4> , t , ~

(ld)

\
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d. Preferred coordinate system: The prior~geometric constraints (1)

guarantee the existence of a preferred coordinate system in which

(i) the time coordinate is equal to the scalar field t ; (ii) the

components of ~ are Minkowskiian

nij = diagonal (1,-1,-1,-1)

(iii) ~is purely spatial

tlJ = 0o

(2a)

(2b)

(iv) the physical line element is

(2c)

e. Lagrangian: The field equations are determined by an action principle

where the Lagrangian density L is

,e M {. ij kt ij= Lr -g + (l/e)tlJilktlJjl~n n - 2~ ,i~,jn

+ 2[f3(~) +1] [~it .n
ij

) 2} M, ,J

(3a)

(3b)

Here LI is the standard "interaction Lagrangian" obtained by taking

the standard Lagrangian for matter and nongravitational fields in flat

spacetime, and replacing the Minkowskii metric by 9 (equivalence

principle). The quantities -g and -n are the determinants of

II-gij II and II-n ij II. In the action principle (3a) one is to vary
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the standard matter and nongravitational fields that appear in LI '

and the gravitational fields $ and ~, while maintaining the

prior~geometric constraints (1). In the preferred coordinate system

(2) the Lagrangian density reduces to

(4)

(Summation on repeated Greek indices).

f. Field equations: The nongravitational field equations derived from

this action principle take on their standard general relativistic

form ("equivalence principle;" "comma-goes-1to-semicolon rule"). In

the preferred coordinate system, the gravitational field equations

reduce to

(5)

Here the stress-energy tensor is the same one as appears in the field

equations of general relativity:

2 a(h LI )
- -- --~-"'--

h agij
ik jR.r- g g ij (6)

g. Post-Newtonian limit: Expand the arbitrary functions f l ($),f
2

($),

and f 3 ($) in powers of $. In order that the metric will become

flat in the absence of gravity ($=~=O), require fl(O) = f
2

(0) = 1.

\ In order that the theory will reduce to Newton's theory in the weak-

I

field, slow-motion limit, require

4

f ($) = 1 - 2$ + ... .
1 Define



a,b,d to be the coefficients of the first unconstrained terms ("post- .

Newtonian terms" in the expansions:

(7a)

(7b)

(7c)

Then the post-Newtonian limit of the. theory reduces to the Nordtvedt­

Wil13 PPN formalism with PPN parameter values

'Y = a, a = b a l = -2e - 4a - 4, a 2 = -d - 1 ,

a =3 ~l = ~2 = ~3 = ~4 = 0 (8)

(The proof is given in an appendix.)

h. Comparison with experiment. By comparing the PPN-parameter values (8)

with the list of experimental limits on PPN parameters as given by Ni,4

one learns that this theory agrees with all experiments to date if

0.96 <: a < 1.12

·0.84 < b < 1.34
(9)

-1.03 < d < -0.97

- -2.2 < e+2a < -1.8

i. Comparison with general relativity. Notice that if

a = b = 1, d = ~l, e = -4 (10)

then this theory has precisely the same post-Newtonian limit as general

relativity! Thus, no post-Newtonian experiment can hope to make a
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clean distinction between this theory and general relativity~

j. Comparison with other Lagrangian-based theories. Wil15 and Ni6 have

shown that all Lagrangian-based metric theories must satisfy the PPN

parameter constraints

n = ~ = ~ = ~ = ~ = 03 1 2 34
(11)

Notice that the theory presented here has arbitrary values for all the

remaining, unconstrained parameters. Thus, this theory possesses the

most general post-Newtonian limit permitted for any Lagrangian-based

. 7
metric theory. This means that no post-Newtonian experiment can hope

to make a clean distinction between this theory and any other Lagrangian

based, metric theory.

k. Special cases. When the arbitrary functions f l ($), f 2($), and f 3 ($)

are suitably specialized, one obtains the following theories:

"Papapetrou I and II" [see §§III.D.v and vi of Reference 2], "Rose~"

[see §III.D. ix of Reference 2], and Ni' s "Lagrangian-based, stratified

theory" [see §III.D.vii of Reference 2].

1. Conservation laws. Global conservation laws for this theory will be

discussed in a future paper.
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APPENDIX

COMPUTATION OF THE POST-NEWTONIAN LIMIT

To obtain the post-Newtonian Itmit of our theory, we proceed as fol-

lows. For convenience, we shall work in the preferred coordinate system.

Let

~ = ~l + ~2+ 0(6)

1/16 = 1/162 + 0(5)

(AI)

where 4>1 = 0(2), ~2 = 0(4), and 1/1 62 = 0(3). [Here "O(n)" means of

order "c-nIl in a post-Newtonian expansion.] Correct to post-Newtonian

order, the field equations (5) are

V2~2 = 4np[1 + (3a-l)U][1 + (2-2b)U

+ v 2(l+a) + 3a ~ + IT] , (A2)

2
V 1/1 62 = 4ne p v6 •

The 0(2)

i. e.,

part of the field equations isl

~ = U1

(A3)

(A4)

where U is the Newtonian potential. The 0(3) part is

2
V ljI 62 = 4ne p v6 ' (AS)



i. e. ,

The 0(4) part is

V2<P2 = -dU - 4rrp [(3a+l- 2b)U + (l+a)v
2
+ 3a .E.+IT]

,tt P

Let X be the solution of

2
V X = -2U

i. e. ,

X = - J pl~ - ~'I~~

We can transform equation (A7) to

(A6)

(A7)

(AB)

(A9)

V2 (<P - .! d·X ) = -4rrp[ (3a+l- 2b)U + (l+a)v 2+ 3a .E.+ IT] (AIO)
2 2 ,tt . . P

Therefore

A. IdX +2~
't'2 = 2" • ,tt

where

2 I . I l+a 3 n
V ~ = -4rrp[- IT + -(3a+1- 2b)U + - U + - aLl

2 2 2 2 p

Combining equations (A4) and (All), we find

<P = U + 2~ + 1
2

dX + 0(6)
,tt

According to equations (2c), (A6) and (AI3), the physical metric is

g = I - 2U + 2bU
2

- 4~ - dX + 0 (6)
00 . ,tt
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= -eVa

By using the gauge transformation

at 0'1
x =x +-X

2 ,0

we can transform the metric into the form

go: = 1 - 2U + 2bU
2
- 4~ + 0(6)

g t = (l d _ e)V _1 dW + 0(5)
oa 2 a 2 a '

t
gaB = -(1 + ZaU) ,

where

(A14)

(A15)

(A16)

W (x, t)
ex. -

(A17)

By comparing this with the PPN metric as given by Will and Nordtvedt,8 we

obtain the PPN parameter values listed in equation (8).
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